

PostgreSQL
The World's Most Advanced Open Source Database

FOSS-STHLM, Feb 2010
Stockholm, Sweden

Magnus Hagander
Redpill Linpro AB

Consulting ● Development ● IT Operations ● Training ● Support ● Products

PostgreSQL is a RDBMS
● Strictly speaking, ORDBMS
● Speaks SQL

– d'uh!

● Stores your data
– double d'uh!

● So what now?

Distribution specific login
● RedHat and Debian use «ident»

– su postgres -c psql

– su postgres -c createuser kalle

● Might want to use «md5» remote?
– Set a password!
– \password kalle

● pg_hba.conf

Basic configuration is tiny!
● shared_buffers = 24MB?

– ¼ of RAM

● work_mem = 1MB?
– Probably 10

● checkpoint_segments=3?
– Start at 10?

● effective_cache_size=128MB?

PostgreSQL validates your data
● Encoding

– Recommended: UTF8

● Datatype
– Exceeding varchar length throws error
– Invalid data format is always error

● Constraints are enforced

Dumps are not backups!
● Slow to take on large databases

Dumps are not backups!
● Slow to take on large databases
● Only restores to backup time!
● Use PITR!
● With log

shipping!

Dumps are still pretty neat...
● Transactionally safe snapshots!
● No locks

– Well, almost, can't do DDL

● Easy format for export/import
– Full DDL and all data included

● Always use custom format!

PostgreSQL is not SQLite/MySQL
(or mariadb, or drizzle, or xtradb, or ourdelta, or)

● Don't be afraid to throw work at
the database

● In most cases, a lot smarter and
faster!

CTEs – the road to Turing Complete
WITH RECURSIVE x(s, ind) AS
(SELECT sud, position(' ' IN sud)
 FROM (SELECT '53 7 6 195 98 6 8 6 34 8 3 17 2 6 6
28 419 5 8 79'::text
 AS sud) xx
 UNION ALL
 SELECT substr(s, 1, ind - 1) || z || substr(s, ind + 1)
 , position(' ' IN repeat('x',ind) || substr(s, ind + 1))
 FROM x
 , (SELECT gs::text AS z FROM generate_series(1,9) gs) z
 WHERE ind > 0
 AND NOT EXISTS (SELECT NULL
 FROM generate_series(1,9) lp
 WHERE z.z = substr(s, ((ind - 1) / 9) * 9 + lp, 1)
 OR z.z = substr(s, mod(ind - 1, 9) - 8 + lp * 9, 1)
 OR z.z = substr(s, mod(((ind - 1) / 3), 3) * 3
 + ((ind - 1) / 27) * 27 + lp
 + ((lp - 1) / 3) * 6
 , 1)
)
) SELECT s FROM x WHERE ind = 0;

More useful CTEs
WITH RECURSIVE t(id, department, name, manager) AS
(
 SELECT id, department, name, manager
 FROM emp WHERE name='Kalle'
 UNION ALL
 SELECT emp.id,emp.department,emp.name,emp.manager
 FROM emp JOIN t ON t.manager=emp.id
)
SELECT * FROM t;

Replication is for replication
● Q: Creating a index on a 500M row

table locks my table for a day!
● A: Set up a second server, enable

replication, add index there, and do
failover

Replication is for replication
● Q: Creating a index on a 500M row

table locks my table for a day!
● A: Set up a second server, enable

replication, add index there, and do
failover

● A: Use
CREATE INDEX CONCURRENTLY

Replication is for replication
● Q: Adding a column to my 100M row

table locks my table for hours!
● A: Set up a second server, enable

replication, add column there, and do
failover

● A: Just add the column, don't set a
DEFAULT

Bottom line
● Don't assume the database can't do

it
– (better than you)

● Assume it can, only workaround
when it can't

Upcoming 9.0 release
● Lots of new features!

– Would take hours to talk about all...

● I'm just going to pick one....

Let's do a challenge
● Task: room booking system
● Requirements: support high

performance and concurrency
● Problem: conflict detection and

resolution?

Booking system
● Let's define a table
CREATE TABLE bookings(
title text,
room text,
start timestamptz,
end timestamptz

)

Booking system
● The PERIOD datatype

– Available on pgFoundry
– Makes dealing with time intervals much

nicer
– Not a requirement, but easier

● Single datatype for start and end
time

Booking system
● Let's define a table
CREATE TABLE bookings(
title text,
room text,
during period

)

Booking system
● How to prevent the same room to

be booked twice?
– Or overlapping?

● Enforced, please!
– In the system, not in the room!

●Ideas?

Exclusion Constraints!
CREATE TABLE bookings(

title text,
room text,
during period,
EXCLUDE USING gist

(room WITH =,
 during WITH &&)

)

NOTICE: CREATE TABLE / EXCLUDE will create
implicit index
"bookings_room_during_exclusion" for table
"bookings"

Constraint violations

INSERT INTO bookings values ('Features
talk', 'AW1.121', period('2010-02-06
17:30', '2010-02-06 18:15'));

ERROR: conflicting key value violates exclusion
constraint "bookings_room_during_exclusion"
DETAIL: Key (room, during)=(AW1.121, [2010-02-06
17:30:00+01, 2010-02-06 18:15:00+01)) conflicts
with existing key (room, during)=(AW1.121, [2010-
02-06 17:15:00+01, 2010-02-06 18:00:00+01)).

Exclusion Constraints
● Any operator that can define

differences
● Typically enforces non-overlap

– Timeframes
– Geometric (square/circle/line)
– Geographical regions (PostGIS)

● Enforced in the database!

Thank You!

Questions?

magnus@hagander.net
http://blog.hagander.net/
Twitter: magnushagander

FreeNode: #postgresql:magnush

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

