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PostgreSQL is a RDBMS
● Strictly speaking, ORDBMS
● Speaks SQL

– d'uh!

● Stores your data 
– double d'uh!

● So what now?



  

Distribution specific login
● RedHat and Debian use «ident»

– su postgres -c psql

– su postgres -c createuser kalle

● Might want to use «md5» remote?
– Set a password!
– \password kalle

● pg_hba.conf



  

Basic configuration is tiny!
● shared_buffers = 24MB?

– ¼ of RAM

● work_mem = 1MB?
– Probably 10

● checkpoint_segments=3?
– Start at 10?

● effective_cache_size=128MB?



  

PostgreSQL validates your data
● Encoding

– Recommended: UTF8

● Datatype
– Exceeding varchar length throws error
– Invalid data format is always error

● Constraints are enforced



  

Dumps are not backups!
● Slow to take on large databases



  

Dumps are not backups!
● Slow to take on large databases
● Only restores to backup time!
● Use PITR!
● With log

shipping!



  

Dumps are still pretty neat...
● Transactionally safe snapshots!
● No locks

– Well, almost, can't do DDL

● Easy format for export/import
– Full DDL and all data included

● Always use custom format!



  

PostgreSQL is not SQLite/MySQL
(or mariadb, or drizzle, or xtradb, or ourdelta, or ....)

● Don't be afraid to throw work at 
the database

● In most cases, a lot smarter and 
faster!



  

CTEs – the road to Turing Complete
WITH RECURSIVE x( s, ind ) AS
( SELECT sud, position( ' ' IN sud )
  FROM  (SELECT '53  7    6  195    98    6 8   6   34  8 3  17   2   6 6    
28    419  5    8  79'::text 
             AS sud) xx
  UNION ALL
  SELECT substr( s, 1, ind - 1 ) || z || substr( s, ind + 1 )
       , position(' ' IN repeat('x',ind) || substr( s, ind + 1 ) )
  FROM x
     ,  (SELECT gs::text AS z FROM generate_series(1,9) gs) z
  WHERE ind > 0
  AND NOT EXISTS ( SELECT NULL
                   FROM generate_series(1,9) lp
                   WHERE z.z = substr( s, ( (ind - 1 ) / 9 ) * 9 + lp, 1 )
                   OR    z.z = substr( s, mod( ind - 1, 9 ) - 8 + lp * 9, 1 )
                   OR    z.z = substr( s, mod( ( ( ind - 1 ) / 3 ), 3 ) * 3
                                      + ( ( ind - 1 ) / 27 ) * 27 + lp
                                      + ( ( lp - 1 ) / 3 ) * 6
                                   , 1 )
                 )
) SELECT s FROM x WHERE ind = 0;



  

More useful CTEs
WITH RECURSIVE t(id, department, name, manager) AS 
(
  SELECT id, department, name, manager
   FROM emp WHERE name='Kalle'
 UNION ALL
  SELECT emp.id,emp.department,emp.name,emp.manager
   FROM emp JOIN t ON t.manager=emp.id
)
SELECT * FROM t;



  

Replication is for replication
● Q: Creating a index on a 500M row 

table locks my table for a day!
● A: Set up a second server, enable 

replication, add index there, and do 
failover



  

Replication is for replication
● Q: Creating a index on a 500M row 

table locks my table for a day!
● A: Set up a second server, enable 

replication, add index there, and do 
failover

● A: Use
CREATE INDEX CONCURRENTLY



  

Replication is for replication
● Q: Adding a column to my 100M row 

table locks my table for hours!
● A: Set up a second server, enable 

replication, add column there, and do 
failover

● A: Just add the column, don't set a 
DEFAULT



  

Bottom line
● Don't assume the database can't do 

it
– (better than you)

● Assume it can, only workaround 
when it can't



  

Upcoming 9.0 release
● Lots of new features!

– Would take hours to talk about all...

● I'm just going to pick one....



  

Let's do a challenge
● Task: room booking system
● Requirements: support high 

performance and concurrency
● Problem: conflict detection and 

resolution?



  

Booking system
● Let's define a table
CREATE TABLE bookings(
title text,
room text,
start timestamptz,
end timestamptz

)



  

Booking system
● The PERIOD datatype

– Available on pgFoundry
– Makes dealing with time intervals much 

nicer
– Not a requirement, but easier

● Single datatype for start and end 
time



  

Booking system
● Let's define a table
CREATE TABLE bookings(
title text,
room text,
during period

)



  

Booking system
● How to prevent the same room to 

be booked twice?
– Or overlapping?

● Enforced, please!
– In the system, not in the room!

●Ideas?



  

Exclusion Constraints!
CREATE TABLE bookings(

title text,
room text,
during period,
EXCLUDE USING gist 

(room WITH =,
 during WITH &&)

)

NOTICE:  CREATE TABLE / EXCLUDE will create 
implicit index 
"bookings_room_during_exclusion" for table 
"bookings"



  

Constraint violations

INSERT INTO bookings values ('Features 
talk', 'AW1.121', period('2010-02-06 
17:30', '2010-02-06 18:15'));

ERROR:  conflicting key value violates exclusion 
constraint "bookings_room_during_exclusion"
DETAIL:  Key (room, during)=(AW1.121, [2010-02-06 
17:30:00+01, 2010-02-06 18:15:00+01)) conflicts 
with existing key (room, during)=(AW1.121, [2010-
02-06 17:15:00+01, 2010-02-06 18:00:00+01)).



  

Exclusion Constraints
● Any operator that can define 

differences
● Typically enforces non-overlap

– Timeframes
– Geometric (square/circle/line)
– Geographical regions (PostGIS)

● Enforced in the database!



  

Thank You!

Questions?

magnus@hagander.net
http://blog.hagander.net/
Twitter: magnushagander

FreeNode: #postgresql:magnush
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